
A CGL Tutorial  

Abstract  

Background  

Sequence alignment algorithms have revealed much about evolution at the nucleotide and amino-acid level, 
but little is yet known about the structural evolution of genes; that is to say, how their intron-exon 
structures, alternative splicing, and UTRs change overtime. Genome annotations comprise an invaluable 
resource for such studies because they describe the essential parts of a gene and their relationships to one 
another. In order to facilitate the use of genome annotations for comparative genomics we have developed 
an open-source software library called CGL.  

Results  

The primary strengths of CGL are that it allows one to relate the parts of one annotation, e.g. its transcripts, 
exons, introns, UTRs, etc to those of another annotation by means of a sequence alignment. Thus, CGL 
greatly simplifies the task of writing scripts to compare genome annotations to one another. Here, we 
describe the software, explain how to use it.  

Conclusions  

CGL makes it possible to study evolution from the perspective of gene structure and will likely provide an 
important adjunct to more traditional approaches that are based solely upon protein and nucleotide 
similarities. CGL provides an easy means to explore, compare, and characterize genome annotations, 
allowing users to ask and answer significant biological questions about genome-annotations without 
becoming bogged down in tangential programming issues.  

Background  

Sequence alignment algorithms have revealed much about evolution at the nucleotide and amino-acid level, 
but little is yet known about the structural evolution of genes; that is to say, how their intron-exon 
structures, alternative splicing, and UTRs change overtime. Genome annotations comprise an invaluable 
resource for such studies because they describe the essential parts of a gene and their relationships to one 
another.  

Despite their potential utility for comparative studies, however, annotations remain primarily something 
‘seen’ in a genome browser [1], rather than something used for computation, and many bio-informatics 
practitioners continue to think of annotations as little more than sources of transcript and protein FASTA-
files. This is an unfortunate state of affairs, as every sequence alignment implicitly aligns two gene-
structures (FIGURE 1), and exploring the interplay between the evolution of gene-structure and sequence-
similarity is a promising new area for bio-informatics made possible by genome-annotations. To date, 
however, work in this area has been limited due to the absence of publicly available software tools for 
computing on annotations. Here we present an easy to use, open-source software library designed to 
facilitate the use of genome annotations as substrates for computation; we call it ‘CGL’ an acronym for 
Comparative Genomics Library, and pronounce it ‘Seagull’.  

 



 

Figure 1. Every sequence alignment implicitly aligns two genes. Panel A shows a typical BLASTP HSP 
giving the alignment of two proteins; panel B outlines some of the relationships between those two 
protein’s corresponding genome annotations that are implied by the protein alignment. Aligning two 
proteins, for example, also implicitly aligns the transcripts that produced them allowing one to ask questions 
about changes in codon usage. Other implied relationships include introns: knowledge of where their splice 
junctions fall relative to the protein allows one ask how often the introns of genes with similar proteins 
occur in similar places; likewise, knowledge about where the splice junctions on a transcript fall relative the 
protein it produces, can imply can alignment between the annotated exons as well. CGL is a software 
library designed to ask and answer questions such as these.  

CGL has several features that greatly facilitate comparative genomics using genome-annotations. First CGL 
can convert annotations in GenBank, Ensembl and FlyBase format into a single standardized graph-based 
description that conforms to the Sequence Ontology [2] and GMOD database schema [3]. Because these 
documents completely describe each annotation in a formal, logical sense, they enable software that can 
easily move from a position on any part of a genome annotation to the equivalent position on some other 
part. For example, given the position of an intron-exon junction on genomic sequence, the relative position 
of that junction on an annotated protein can be recovered. We term such coordinate transforms 
‘metaPostions’, and detail their use below. A second key feature of CGL is that it extends the BioPerl Blast 
Hit and HSP classes [4], in such a way that the coordinate of any aligned residue can be extracted from a 
BLAST alignment. The equivalent position of that residue’s partner in the alignment can also be recovered.  

Taken together these two functionalities allow CGL users to exploit genome annotations and sequence 
alignments in new ways. In point of fact, CGL makes it possible to ‘blast annotations’ rather than sequences 
against one-another, making it possible to infer a wide array of information about conservation of gene 
structure from a BLAST report, even from an un-annotated target genome, and even in the absence an 
assembly.  

A standardized machine-readable description of an annotation  

Normally one thinks of genome annotations in the context of large web-based warehouses such as GenBank 
[5], Ensembl [6], SGD [7], FlyBase [8], or WormBase [9]. These databases all employ robust data-models 
for describing annotations and distribute these data in a variety of markup languages such as GFF and 
XML; other repositories also exist in both academia and industry, each with their own distinctive data-
models. For better or worse, however, there exists no central repository where one can go to get every 
genome-annotation represented using a single data-model, and in a single markup language; nor is there 
likely to be one so long as genome sequencing and annotation remain a decentralized, community activity. 



This means that a researcher interested in one or a few genome-annotations from a variety of organisms is 
often faced with incompatible formats for each annotation. In practice then, using genome annotations for 
comparative genomics often entails writing complex software to convert these disparate formats in to a 
single usable data-representation.  

CGL circumvents these difficulties, and shields users from the complexities that surround data-conversion 
and representation, as the library comes with a script, cx-genbank2chaos.pl (http://www.fruitfly.org/chaos-
xml/bin/ ), that allows users to convert GenBank, Ensembl, and FlyBase annotations into a single file format 
that we term Chaos.xml. These XML documents are graph-based descriptions of annotations that make use 
the Sequence Ontology [2] to describe the data they contain.  

Using these files as inputs to CGL has two chief advantages. First, they minimize overhead, especially for 
researchers who are interested in only a few annotations and have neither need nor desire to install local 
copies of the various annotation databases. Probably, the biggest advantage Chaos.xml documents confer, 
however, is that they greatly facilitate the logical partitioning of annotations into their explicit and implicit 
parts, and explorations of the relationships among these parts.  

Explicit & Implicit Parts and Coordinate Relationships  

Every genome annotation contains both explicit and implicit parts. There also exist coordinate relationships 
among these parts. Explicitly annotating a transcript’s exons on the genome, for example, also implicitly 
annotates introns. Likewise, annotating a start codon on that transcript creates an implied coordinate 
relationship between the ATG on the transcript, and the position of that ATG on the genome. The volume 
of explicit and implicit information contained in an annotation is therefore very large. Thus, those parties 
creating and distributing annotation information must make practical decisions as to which parts and 
relationships they explicitly describe in their data models. Clearly, not every part or relationship is of equal 
interest to the community as a whole: most researchers are more interested in exon coordinates on the 
genome than they are the phases of those exon junctions relative to a protein. Thus most annotation 
databases attempt to meet the needs of the ‘average’ researcher by distributing flat-files that explicitly 
describe an annotation’s most frequently ‘used’ parts and relationships; and by providing frequently-used 
logical partitions of annotation data, such as fasta-files of transcripts, and proteins. While these data meet 
most researchers’ needs, they often are of little help for those interested in digging deeper into the in silico 
structure of a gene.  

Distributing gargantuan flat-files that exhaustively enumerate every conceivable relationship between the 
parts of an annotation is simply not a workable solution. And providing pre-written databases queries 
granting researcher access to them all is task best left to Sisyphus; on the other hand, it’s precisely these 
sorts of data and relationships that CGL is designed to grant its users easy access to.  

Access to the Explicit and Implicit Parts of a gene-annotation  

CGL is written in Object Orientated PERL and provides simple and intuitive access to an annotation, its 
parts both explicit and implicit, and the coordinate relationships that obtain between them. Note that CGL 
comes with a variety of ‘starter’ scripts and sample data in its script and sample_data sub-directories. 
Working examples of most of the manipulations described below can be found in script/cgl_tutorial and 
script/cgl_phat_tutorial. 

 

CGL’s base object is an ‘Annotation’. A Chaos XML file is converted in to an Annotation object with the 
following call:  

$annotation = new CGL::Annotation($chaos_file).  

Though a Chaos XML file can contain several gene annotations, analysis of an annotation usually begins at 
the individual gene level. CGL provides several methods for extracting a gene object from an annotation 
object. Probably the most straightforward approach is to access a gene by its id:  

$g = $annotation->get_gene_by_id(‘id’).  

Next fetch the genomic contig; this is the DNA backbone on which the gene of interest resides:  



$c = $annotation->contig(0).  

 
To navigate within a gene, all programmers need keep in mind is a simple model of what of a gene is, and 
what its parts consist of. Formally, CGL’s gene model is that of the Sequence Ontology [2], so the model is 
explicit and rigorous, but it’s also simple. CGL considers a gene to consist of one or more transcripts; these 
transcripts are composed of one or more exons. To fetch the first annotated transcript associated with a gene 
use the call shown below; this is the transcript with the 5’-most annotated transcription start-site:  

$t = $g->transcript(0).  

If that gene has more than one annotated transcript, they can be accessed in order of their transcription start-
sites from 5-prime to 3-prime by incrementing the argument to the method, e.g., 1, 2, and so on. The 
transcript method will return ‘undef’ if no such transcript object exists. This is true of every CGL ‘Feature’ 
method. Attempts to access a non-existent part or coordinate relationship always return undefined. This 
feature of the CGL allows users to easily ask if a part or relationship exists before proceeding with further 
analyses, i.e.,  

next unless defined($g->transcript(2)).  

To access the protein associated with a transcript use the call shown below. If that transcript has more than 
one annotated translation, those translations can be accessed by incrementing the argument to the method, 
just as was described above for the transcript method. Again, if the i

th 

translation doesn’t exist, or your gene 
is a non-coding RNA gene, the method will return undefined.  

$p = $t->translation(0).  

The exons of a transcript are accessed in the same manner:  

$e = $t->exon(1).  

This call will return the 2
nd 

exon of the transcript, or ‘undef’ if the transcript contains only a single exon. 
Note that if a gene has two alternatively spliced transcripts that share an exon in common, then both 
transcript objects share that exon object in common. This is both logical and in keeping with the 
specifications of the Sequence Ontology [2]. It also greatly facilitates many analyses. Shared exons—and 
shared parts in general—can easily be discovered using the id() method, as these are always unique within 
the context of a given CGL::Annotation, e.g.,  

$e->id().  

In every case the sequence associated with an object can be accessed through the residues method:  

$p->residues().  

The above call above will return the amino acid sequence of that protein object; likewise calling the same 
method on a transcript, exon, or contig object will return the appropriate nucleotide sequence.  

Introns provide an example of an implicit part of an annotation. Though not explicitly described in most 
annotation data-models, including the Chaos data-model, introns are of interest to a large enough number of 
researchers to merit their own predefined class in CGL. Like exons, introns are associated with transcripts. 
To access an intron use the call  

$i = $t->intron(0).  

The behavior of this method is identical to the exon method, and like that method, if two transcripts of a 
gene contain the same pair of exons, then those two transcripts will also share the same intron. Hence, an 
intron object may be shared in common with one or more transcript objects. Like the explicit parts of a 
CGL annotation, the sequence of an intron is accessed through the ‘residues’ method.  

 
 



Access to Explicit and Implicit Coordinate Relationships  

The metaPos() method allows CGL users to explore explicit and implicit coordinate relationships between 
the parts of an annotation. Using this method, a programmer can relate any position on any part of an 
annotation to the equivalent position on any other part of that annotation for which that operation makes 
semantic sense. It is possible to move, for example, from a position in a protein sequence to the equivalent 
position in an exon, transcript or contig and vice versa. The syntax of the MetaPos() method, is ‘reverse 
polish’, and is used as follows: 

<desired offset on $b> = $a->metaPos($b, <known offset on $a>).  

 
The explicitly annotated start of an exon on the genomic contig, for example, can be recovered with the 
following call:  

$e->metaPos($c, 0),  

where $e, and $c are exon and contig objects as described in the previous section, and 0 refers to the offset 
of interest with the object calling the metaPos method. Note that because the Chaos data-model is ‘zero 
space based’, an offset of 0 on the exon corresponds to its beginning; likewise the length of the exon 
corresponds to its end. Thus, the explicitly annotated end of an exon on the genomic contig can be 
obtained with the call  

$e->metaPos($c, $e->length()).  

Notice that the only difference between this call and the one above it involves the second argument to 
metaPos(). To obtain, for example, the position of the 3

rd 

base of an exon on the genomic contig—an implied 
coordinate relationship, call the method with that offset, i.e.  

$e->metaPos($c, 2).  

The metaPos() method provides uniform access all coordinate relationships among the parts of an 
annotation, explicit and implied. For, example, to recover the start of translation on a transcript use the call  

$p->metaPos($t, 0).  

Likewise the call below will return the position of the stop codon on a transcript.  

$p->metaPos($t, $p->length). 
  

The equivalent position on the protein of any position of the transcript can be recovered just as easily:  

$t->metaPos($p, 341).  

Note that relationships between an offset on a transcript and the equivalent position on a protein are 
complicated by the genetic code. Since nucleotides are translated three-at-a-time, there exists a ‘many to 
one’ relationship between positions on the transcript and positions on the protein. In order to avoid 
ambiguity, the metaPos() method returns a float in such cases, the mantissa of which gives the amino acid, 
the remainder the phase within that amino-acid’s codon. For example, a value of 21.33333 would mean that 

an offset of 341 on the transcript corresponds to amino acid 21 of the protein in phase 1 of the 21
st 

codon. A 
value of 21.6666 would denote the same amino acid, but in phase 2. If the return value lacks a remainder, it 
means that the phase is 0. In cases where the offset on the transcript lies in UTR, the call shown above will 
return ‘undef’. This is true of all calls to the metaPos() method: if the requested meta position does not 
logically obtain, the method will return undefined.  

Some coordinate relationships require sequential calls to the metaPos() method. To recover the position of a 
protein’s methionine on the genomic contig, for example, first find its position on the transcript:  

$start = $p->metaPos($t, 0).  

Then transpose that position onto the genomic contig:  

$t->metaPos($c, $start).  



Multi-step meta-positions such as these can be abbreviated as:  

$t->metaPos($c, $p->metaPos($t, 0)),  

and are required whenever the sought after coordinate relation involves a protein and some object that is 
not a transcript.  

The examples discussed so far illustrate two of the principle features of the metaPos() method. First, no 
matter what parts of the annotation are involved, the grammar and syntax of the call remains the same and 
has the form:  

<desired offset on $b> = $a->metaPos($b, <known offset on $a>).  

Second, it makes no difference whether the sought after coordinate relationship is explicitly described in 
the Chaos data-model or implicit. Any semantically meaningful use of the metaPos()method will return a 
value. This means that users of the CGL library are no longer slaves to the details of the annotation data 
model—any coordinate relationship that they can imagine can be recovered in a single line of code. This 
frees CGL users to discover explore and explore biologically meaningful relationships amongst the parts of 
an annotation without even considering whether or not those relationships are explicit or implied.  

Manufacturing Implicit Parts for further analyses  

Most bioinformatics analyses involve sequence analyses. CGL facilitates these analyses by providing easy 
access to the sequences that correspond to the explicit and implicit parts of an annotation. Access the 
sequence of explicit parts is granted though the residues() method ( see § Access to Explicit and Implicit 
Parts for details). The large number and diversity of implied parts, however, precludes the existence of a 
single, generic residues() method for the implied parts of an annotation. This means that CGL users 
interested in the sequence of a particular implied part need to manufacture that sequence themselves. CGL 
provides the easy means to do so.  

 
UTRs are a good example. These sequences are of interest to many researchers, and yet can be difficult to 
obtain. To recover the sequence of an annotated transcript’s 5-& 3-prime UTRs with CGL, first use the 
metaPos() method to obtain the start and stop of the translation, where $t is the ‘transcript of interest’, and 
$p, one of its translations:  

$start = $p->metaPos($t, 0). 
$stop = $p->metaPos($t, $p->length()). 
 

The sequences of the 5 and 3-prime UTRs, respectively, can then be obtained with the following two 
lines of code:  

substr($t->residues, 0, $start); 
substr($t->residues, $stop). 
 

Or, if the user so desires, the entire procedure can be abbreviated in the form:  

substr($t->residues, 0, $p->metaPos($t, 0)); 
substr($t->residues, $p->metaPos($t, $p->length)). 
 

The sequences of more exotic implied parts of an annotation are just as easy to manufacture. The portion 
of a protein corresponding to a given exon provides an instructive example. To manufacture this 
sequence, first identify the exon’s implied begin and end on the transcript of interest:  

$e = $t->exon(1); 
$t_begin = $e->metaPos($t, 0); 
$t_end = $e->metaPos($t, $e->length). 

Next use the metaPos() method to identify the equivalent positions on the protein:  

$p_begin = $t->metaPos($p, $t_begin); 



$p_end = $t->metaPos($p, $t_end). 
 

The desired portion of the protein’s amino-acid sequence can then be obtained with a call to the PERL 
substring function:  

substr($p->residues, $p_begin, $p_end -$p_begin).  

Finally, users whose research is centered on a particular implied part of a gene may find it convenient to 
write their own subroutines using CGL, thus reducing the amount of scripting required to manufacture such 
sequences still further, e.g.:  

print utr_sequence($t, $p, 5).”\n”;  

sub utr_sequence { 
 ($t, $p, $type) = @_; if ($type == 5){ 

return substr($t->residues, 0, $p->metaPos($t, 0)); 
} 
else { 
 return substr($t->residues, $p->metaPos($t, $p->length)); 

} 
}  

 
These examples demonstrate a fundamental design paradigm of CGL: less is more. The utility of CGL 
springs from its simplicity. Rather than provide a bewildering array of exotic methods for manipulating 
annotations, CGL provides a few essential methods that can be combined in different ways to manufacture 
any implicit part of an annotation. Most tasks can be accomplished with recourse to only three methods: 
residues(), length(), and metaPos(). This means that CGL users needn’t concern themselves with the details 
of the data-model or database schema associated with the annotations. Nor need they concern themselves 
with the guts of CGL. This means that very little time is required to master CGL, freeing users to focus on 
biological problems, rather than gory programming details.  

Every sequence alignment implicitly aligns two genes: using Phat Hits & HSPs 

CGL provides the means to compare genome annotations to one another using BLAST sequence 
alignments. It does so by extending the BioPerl GenericHit and GenericHSP classes. These extensions, 
called PhatHit and PhatHSP, provide additional methods that greatly facilitate comparative genomics as 
they grant users improved access to the coordinate relationships implied by BLAST HSPs. Whereas the 
existing BioPerl classes provide access only to the begin and end coordinates of an alignment, the Phat 
classes provide access to the explicit and implied positions of any aligned residue in a BLAST HSP. Their 
methods operate on gapped alignments. Moreover, the Phat classes also transparently manage the 
complexities that arise when attempting to relate the position of an aligned amino acid in a BLASTX, 
TBLASTN, or TBLASTX alignment to its actual position on the nucleotide sequence provided to BLAST. 
Requests, for example, for the position on an aligned amino acid in the query portion of a TBLASTN 
alignment will return the position of that amino acid on the protein query, whereas a request for a position 
on the sbjct portion for the alignment are returned relative to the subject’s nucleotide sequence. Perhaps, 
more importantly, once a user has identified a position of interest on one strand of an alignment, the 
equivalent coordinate on the other sequence can be recovered in a single method call. This feature greatly 
facilitates comparative genomics analyses, as that coordinate can then be passed to CGL’s metaPos() 
method allowing users to explore other, implied relationships between the parts of two genome annotations.  

Parsing a BLAST report using the Phat Classes  

To employ the CGL extensions of the Bioperl Hit and HSP classes when parsing a BLAST report first 
create a Bioperl Bio::SearchIO object:  

$sio = new Bio::SearchIO(-format => ‘blast’, -file => ‘my_blast_report’).  

The next step is to select the appropriate subclass of PhatHit and PhatHSP objects to employ. Use the blastn 



subclasses for BLASTN reports, the tblastx subclasses when parsing TBLASTX reports, etc. If parsing a 
BLASTP report, for example, use the blastp subclasses:  

$hit_type = ‘Bio::Search::Hit::GenericHit::blastp::PhatHit’;  

$hsp_type = ‘Bio::Search::Hit::GenericHit::blastp::PhatHSP’.  

The next step is to create Bioperl Object factories that will populate these classes when parsing the blast 
report:  

$hit_factory = new Bio::Search::Hit::HitFactory(-type => $hit_type);  

$hsp_factory = new Bio::Search::HSP::HSPFactory(-type => $hsp_type);  

These object factories are then registered with the Bioperl SearchIO event handler as follows.  

$sio->_eventHandler-> register_factory(‘hit’, $hit_factory).  

$sio->_eventHandler->register_factory(‘hsp’, $hsp_factory).  

Hit and HSP objects are now employed just as they would be normally using Bioperl e.g. 

   $result = $sio->next_result();  

$hit = $result->next_hit();  

$hsp = $hit->next_hsp();  

But, because they are Phat, they provide an extended set of methods designed to facilitate comparative 
genomics. The most important of these methods are documented below.  

Using Phat HSPs together with annotations for comparative genomics  

PhatHSPs are extensions of the Bioperl GenericHSP class. For working examples of how to use Phat Hits 
and HSPs see cgl_phat_tutorial, a starter script located in the CGL script sub-directory. 

For purposes of the following description of their use, consider the BLASTP HSP shown in figure 2. In the 
examples below, the CGL object corresponding to the query protein aligned in figure 2, is denoted as $q_p; 
that protein’s transcript, is $q_t; and one of its exons is $q_e. Likewise, $s_p denotes the corresponding 
sbjct protein, and $s_t that protein’s corresponding transcript.  

Score = 94 (38.1 bits), Expect = 2.2e-10, P = 
2.2e-10, Identities = 15/18 (83%), 
Positives = 16/18 (88%) 
 

Query:  1 MDEWRQWKMDEQVWDAER 18  

 MD+WR WKMD+QVWD ER  
Sbjct:  1 MDDWR-WKMDKQVWDMER 17  

 
Figure 2. A WU-BLASTP HSP  

Suppose one is interested in determining if the sequence alignment shown in figure 2 implies that the two 
genes producing those proteins possess an intron at the same position relative to their protein sequences. 



The position of a particular splice junction on the query protein can be obtained with the CGL call:  

 
$pos_on_q_protein = $q_t->metaPos($q_p, $q_e->metaPos($q_t, 0)).  

A value of, for example, 10 would mean that the exon, $q_e, began in phase 0, just prior to the ‘E’ located 
at position 11 of query sequence shown figure 2. For more information about how CGL handles phase 
relationships see the preceding section entitled ‘Access to Explicit and Implicit Coordinate Relationships’. 
Note that coordinate returned by CGL’s metaPos() method must be incremented by 1 as unlike CGL, 
Bioperl does not employ a zero, space-based coordinate system.  

Of course the fact that a splice junction maps to a position on the protein, says nothing about whether or not 
that region of the protein is aligned a particular HSP. To ascertain this fact use the two calls shown below.  

next unless $hsp->nB(‘query’) <= $pos_on_q_protein + 1.  

next unless $hsp->nE(‘query’) >= $pos_on_q_protein + 1.  

PhatHSPs provide two methods called nB() & nE() or natural begin and natural end, respectively. These 
method behave exactly like the Bioperl GenericHSP start() and end() methods, except that they preserve the 
native order of the start and end coordinates of an HSP given in the BLAST report, i.e.,  

$hsp->nB() > $hsp->nE() for minus strand hits. 

 These methods facilitate some analyses. Note that PhatHit and PhatHSP objects observe the Bioperl 
practice of referring to the ‘sbjct’ sequence of a BLAST HSP as the ‘hit’.  

Alternatively, whether or not an HSP contains a position of interest in its alignment can also be determined 
with the call:  

$hsp->isContained(‘query’, $pos_on_q_protein + 1).  

The isContained() method will return 0 if the position on the specified ‘query’ or ‘hit’ sequence lies outside 

of the HSP or if the residue located at the position specified by the 2
nd 

argument is opposite a gap in its 
partner, otherwise it will return 1.  

Phat HSPs provide easy access to the character present at any position of a BLAST sequence alignment 
through the whatIsThere() method; the first argument to this method specifies the sequence of interest: 
‘query’ or ‘hit’, the second the position of interest on that sequence.  

$hsp->whatIsThere(‘query’, $pos_on_q_protein + 1).  

For the HSP shown in figure 2, the call shown above will return an ‘E’, as this is the amino acid present at 
that position of the sequence alignment in figure 2.  

The equivalent position on the sbjct sequence can be recovered with the following call.  

$hsp->equivalent_pos_in_alignment_partner(‘query’, $pos_on_q_protein + 1).  

The first argument to the above method denotes which sequence, ‘query’ or ‘hit’ the coordinate given as the 
second argument lies on. The method returns the equivalent position on the alignment partner. If $hsp were 
a TBLASTN or TBLASTX HSP, the return value would in nucleotide coordinates. In this example, the 
method would return a value of 10 (see figure 2), as this position on the hit sequence that corresponds to a 
position of 11 on the query sequence. Note that the equivalent position on the annotated hit protein is 9. 
(recall that BioPerl counts from base 1, whereas CGL counts from space 0) A fact that can be verified with 
the call:  

die unless $hsp->whatIsThere(‘hit’, 10) eq substr($s_p->residues, 9, 1),  

where $s_p is the corresponding CGL protein object for the sbjct sequence. Both calls would return a 



‘K’ for the example shown in figure 2. Had the residue at that position on the query sequence been 
opposite a gap in the sbjct sequence, the method would have returned undefined.  

Determining if the gene producing the subject protein contains an intron at this position is accomplished 
with a short CGL based subroutine, e.g.,  

print “YES\n.” if intron_at_this_pos_on_protein($s_t, $s_p, 9);  

sub intron_at_this_pos_on_protein { 
($t, $p, $pos) = @_;  
$i= 0;  
while($e = $t->exon($i)){  

$i++;  
$i_pos = $t->metaPos($p, $e->metaPos($t, 0));  
next unless defined($i_pos);  
return 1 if int($i_pos) == $pos;  

} 
return 0; 
 

}  

Obviously many variations of the examples shown in this brief exposition are possible. PhatHSPs and the 
protein, transcript and exon objects provided by CGL are designed to complement one another, especially 
as regards the metaPos() method. The ability to easily relate the parts of one annotation to those of another 
using a sequence alignment makes simple many analyses that were previously next to impossible.  

Conclusions  

The analyses presented here demonstrate that CGL provides an easy means to explore, compare, and 
characterize genome annotations. As the code will run anywhere the CGL library is installed and Chaos 
documents are available, changing workplaces does not longer require downtime in order to master the 
quirks of the local database schema and programming environment; all that’s required to use CGL is a basic 
knowledge of PERL, and familiarity with concepts such as exon, transcript and protein.  

For more information about using CGL for analyses see: 
 
Large-Scale Trends in the Evolution of Gene Structures within 11 Animal Genomes  
Mark Yandell, Chris J. Mungall, Chris Smith, Simon Prochnik, Joshua Kaminker, George Hartzell, Suzanna 
Lewis & Gerald M. Rubin. PloS Computational Biology, in press. 
 
A computational and experimental approach to validating annotations and gene predictions in the 
Drosophila melanogaster genome. Mark Yandell, Adina M. Bailey,   Sima Misra, ShengQiang Shu, Colin 
Wiel,  Martha Evans-Holm,  Susan E. Celniker  and  Gerald M. Rubin 
PNAS, February 1, 2005; vol. 102; no. 5;pp. 1566-1571 
 
 
Appendix 1: Details of the Chaos data-model  

Please see the following web page: www.fruitfly.org/chaos-xml  

Appendix 2: CGL is based around the Sequence Ontology  

Comparing the parts of genes to one-another dictates that the terms used to describe an annotation and its 
parts be precisely defined; note that ‘parts’ means things like ‘exon’, intron’ ‘stop codon’, etc. Normally, 
one relies on common usage when applying descriptive terms such as ‘exon’, or ‘UTR’, to a gene, but 
large-scale comparative genomics requires that we be more precise, least ambiguity creep into comparisons. 
Does a UTR contain a stop codon? Do all transcripts contain exons? Rational arguments can be made for 
answering either of these questions with a ‘yes’ or ‘no’. What is important is that there exist a fixed and 
fully defined terminology for describing the parts of an annotation and how they relate to one another. It is 
for these reasons that CGL employs the Sequence Ontology [2].  



CGL employs the Sequence Ontology to define its class schema, inheritance hierarchy and interfaces. The 
Current release of CGL contains modules for contigs, genes, transcripts, exons, introns, and protein objects. 
These objects are created on demand when CGL parses a Chaos XML document. For example, transcript 
objects are created when CGL encounters the term ‘transcript in a document. Likewise, because the 
Sequence Ontology describes an exon as a legitimate part of a transcript, CGL will look for, automatically 
create and attach the appropriate set of exon objects to each transcript object.  

CGL also uses the Sequence Ontology as a natural paradigm for sub-classing objects. For example, if a 
portion of an annotation is described as an ‘mRNA’ in a document, CGL will create a transcript object 
corresponding to that feature; this is because an ‘mRNA’ ‘isa’ ‘Transcript’ according to the Sequence 
Ontology. Thus, any term that is a child of the Sequence Ontology terms ‘Transcript’, ‘Exon’, ‘Intron’, and 
‘Protein’ can be used to describe the parts of a gene in a Chaos XML document.  

The methods appropriate to a class are also (in part) dictated by the Sequence Ontology. If an mRNA is 
found to have a defining, essential part, then at some future point in time, it may prove advisable to create a 
CGL::Annotation::Feature::Transcript::mRNA class containing a method particular to an mRNA.. Thus, the 
Sequence Ontology also provides a natural direction in which to extend CGL as it matures.  
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