
A CGL Tutorial

Abstract

Background

Sequence alignment algorithms have revealed much about evolution at the nucleotide and amino-acid level,
but little is yet known about the structural evolution of genes; that is to say, how their intron-exon
structures, alternative splicing, and UTRs change overtime. Genome annotations comprise an invaluable
resource for such studies because they describe the essential parts of a gene and their relationships to one
another. In order to facilitate the use of genome annotations for comparative genomics we have developed
an open-source software library called CGL.

Results

The primary strengths of CGL are that it allows one to relate the parts of one annotation, e.g. its transcripts,
exons, introns, UTRs, etc to those of another annotation by means of a sequence alignment. Thus, CGL
greatly simplifies the task of writing scripts to compare genome annotations to one another. Here, we
describe the software, explain how to use it.

Conclusions

CGL makes it possible to study evolution from the perspective of gene structure and will likely provide an
important adjunct to more traditional approaches that are based solely upon protein and nucleotide
similarities. CGL provides an easy means to explore, compare, and characterize genome annotations,
allowing users to ask and answer significant biological questions about genome-annotations without
becoming bogged down in tangential programming issues.

Background

Sequence alignment algorithms have revealed much about evolution at the nucleotide and amino-acid level,
but little is yet known about the structural evolution of genes; that is to say, how their intron-exon
structures, alternative splicing, and UTRs change overtime. Genome annotations comprise an invaluable
resource for such studies because they describe the essential parts of a gene and their relationships to one
another.

Despite their potential utility for comparative studies, however, annotations remain primarily something
‘seen’ in a genome browser [1], rather than something used for computation, and many bio-informatics
practitioners continue to think of annotations as little more than sources of transcript and protein FASTA-
files. This is an unfortunate state of affairs, as every sequence alignment implicitly aligns two gene-
structures (FIGURE 1), and exploring the interplay between the evolution of gene-structure and sequence-
similarity is a promising new area for bio-informatics made possible by genome-annotations. To date,
however, work in this area has been limited due to the absence of publicly available software tools for
computing on annotations. Here we present an easy to use, open-source software library designed to
facilitate the use of genome annotations as substrates for computation; we call it ‘CGL’ an acronym for
Comparative Genomics Library, and pronounce it ‘Seagull’.

Figure 1. Every sequence alignment implicitly aligns two genes. Panel A shows a typical BLASTP HSP
giving the alignment of two proteins; panel B outlines some of the relationships between those two
protein’s corresponding genome annotations that are implied by the protein alignment. Aligning two
proteins, for example, also implicitly aligns the transcripts that produced them allowing one to ask questions
about changes in codon usage. Other implied relationships include introns: knowledge of where their splice
junctions fall relative to the protein allows one ask how often the introns of genes with similar proteins
occur in similar places; likewise, knowledge about where the splice junctions on a transcript fall relative the
protein it produces, can imply can alignment between the annotated exons as well. CGL is a software
library designed to ask and answer questions such as these.

CGL has several features that greatly facilitate comparative genomics using genome-annotations. First CGL
can convert annotations in GenBank, Ensembl and FlyBase format into a single standardized graph-based
description that conforms to the Sequence Ontology [2] and GMOD database schema [3]. Because these
documents completely describe each annotation in a formal, logical sense, they enable software that can
easily move from a position on any part of a genome annotation to the equivalent position on some other
part. For example, given the position of an intron-exon junction on genomic sequence, the relative position
of that junction on an annotated protein can be recovered. We term such coordinate transforms
‘metaPostions’, and detail their use below. A second key feature of CGL is that it extends the BioPerl Blast
Hit and HSP classes [4], in such a way that the coordinate of any aligned residue can be extracted from a
BLAST alignment. The equivalent position of that residue’s partner in the alignment can also be recovered.

Taken together these two functionalities allow CGL users to exploit genome annotations and sequence
alignments in new ways. In point of fact, CGL makes it possible to ‘blast annotations’ rather than sequences
against one-another, making it possible to infer a wide array of information about conservation of gene
structure from a BLAST report, even from an un-annotated target genome, and even in the absence an
assembly.

A standardized machine-readable description of an annotation

Normally one thinks of genome annotations in the context of large web-based warehouses such as GenBank
[5], Ensembl [6], SGD [7], FlyBase [8], or WormBase [9]. These databases all employ robust data-models
for describing annotations and distribute these data in a variety of markup languages such as GFF and
XML; other repositories also exist in both academia and industry, each with their own distinctive data-
models. For better or worse, however, there exists no central repository where one can go to get every
genome-annotation represented using a single data-model, and in a single markup language; nor is there
likely to be one so long as genome sequencing and annotation remain a decentralized, community activity.

This means that a researcher interested in one or a few genome-annotations from a variety of organisms is
often faced with incompatible formats for each annotation. In practice then, using genome annotations for
comparative genomics often entails writing complex software to convert these disparate formats in to a
single usable data-representation.

CGL circumvents these difficulties, and shields users from the complexities that surround data-conversion
and representation, as the library comes with a script, cx-genbank2chaos.pl (http://www.fruitfly.org/chaos-
xml/bin/), that allows users to convert GenBank, Ensembl, and FlyBase annotations into a single file format
that we term Chaos.xml. These XML documents are graph-based descriptions of annotations that make use
the Sequence Ontology [2] to describe the data they contain.

Using these files as inputs to CGL has two chief advantages. First, they minimize overhead, especially for
researchers who are interested in only a few annotations and have neither need nor desire to install local
copies of the various annotation databases. Probably, the biggest advantage Chaos.xml documents confer,
however, is that they greatly facilitate the logical partitioning of annotations into their explicit and implicit
parts, and explorations of the relationships among these parts.

Explicit & Implicit Parts and Coordinate Relationships

Every genome annotation contains both explicit and implicit parts. There also exist coordinate relationships
among these parts. Explicitly annotating a transcript’s exons on the genome, for example, also implicitly
annotates introns. Likewise, annotating a start codon on that transcript creates an implied coordinate
relationship between the ATG on the transcript, and the position of that ATG on the genome. The volume
of explicit and implicit information contained in an annotation is therefore very large. Thus, those parties
creating and distributing annotation information must make practical decisions as to which parts and
relationships they explicitly describe in their data models. Clearly, not every part or relationship is of equal
interest to the community as a whole: most researchers are more interested in exon coordinates on the
genome than they are the phases of those exon junctions relative to a protein. Thus most annotation
databases attempt to meet the needs of the ‘average’ researcher by distributing flat-files that explicitly
describe an annotation’s most frequently ‘used’ parts and relationships; and by providing frequently-used
logical partitions of annotation data, such as fasta-files of transcripts, and proteins. While these data meet
most researchers’ needs, they often are of little help for those interested in digging deeper into the in silico
structure of a gene.

Distributing gargantuan flat-files that exhaustively enumerate every conceivable relationship between the
parts of an annotation is simply not a workable solution. And providing pre-written databases queries
granting researcher access to them all is task best left to Sisyphus; on the other hand, it’s precisely these
sorts of data and relationships that CGL is designed to grant its users easy access to.

Access to the Explicit and Implicit Parts of a gene-annotation

CGL is written in Object Orientated PERL and provides simple and intuitive access to an annotation, its
parts both explicit and implicit, and the coordinate relationships that obtain between them. Note that CGL
comes with a variety of ‘starter’ scripts and sample data in its script and sample_data sub-directories.
Working examples of most of the manipulations described below can be found in script/cgl_tutorial and
script/cgl_phat_tutorial.

CGL’s base object is an ‘Annotation’. A Chaos XML file is converted in to an Annotation object with the
following call:

$annotation = new CGL::Annotation($chaos_file).

Though a Chaos XML file can contain several gene annotations, analysis of an annotation usually begins at
the individual gene level. CGL provides several methods for extracting a gene object from an annotation
object. Probably the most straightforward approach is to access a gene by its id:

$g = $annotation->get_gene_by_id(‘id’).

Next fetch the genomic contig; this is the DNA backbone on which the gene of interest resides:

$c = $annotation->contig(0).

To navigate within a gene, all programmers need keep in mind is a simple model of what of a gene is, and
what its parts consist of. Formally, CGL’s gene model is that of the Sequence Ontology [2], so the model is
explicit and rigorous, but it’s also simple. CGL considers a gene to consist of one or more transcripts; these
transcripts are composed of one or more exons. To fetch the first annotated transcript associated with a gene
use the call shown below; this is the transcript with the 5’-most annotated transcription start-site:

$t = $g->transcript(0).

If that gene has more than one annotated transcript, they can be accessed in order of their transcription start-
sites from 5-prime to 3-prime by incrementing the argument to the method, e.g., 1, 2, and so on. The
transcript method will return ‘undef’ if no such transcript object exists. This is true of every CGL ‘Feature’
method. Attempts to access a non-existent part or coordinate relationship always return undefined. This
feature of the CGL allows users to easily ask if a part or relationship exists before proceeding with further
analyses, i.e.,

next unless defined($g->transcript(2)).

To access the protein associated with a transcript use the call shown below. If that transcript has more than
one annotated translation, those translations can be accessed by incrementing the argument to the method,
just as was described above for the transcript method. Again, if the i

th

translation doesn’t exist, or your gene
is a non-coding RNA gene, the method will return undefined.

$p = $t->translation(0).

The exons of a transcript are accessed in the same manner:

$e = $t->exon(1).

This call will return the 2
nd

exon of the transcript, or ‘undef’ if the transcript contains only a single exon.
Note that if a gene has two alternatively spliced transcripts that share an exon in common, then both
transcript objects share that exon object in common. This is both logical and in keeping with the
specifications of the Sequence Ontology [2]. It also greatly facilitates many analyses. Shared exons—and
shared parts in general—can easily be discovered using the id() method, as these are always unique within
the context of a given CGL::Annotation, e.g.,

$e->id().

In every case the sequence associated with an object can be accessed through the residues method:

$p->residues().

The above call above will return the amino acid sequence of that protein object; likewise calling the same
method on a transcript, exon, or contig object will return the appropriate nucleotide sequence.

Introns provide an example of an implicit part of an annotation. Though not explicitly described in most
annotation data-models, including the Chaos data-model, introns are of interest to a large enough number of
researchers to merit their own predefined class in CGL. Like exons, introns are associated with transcripts.
To access an intron use the call

$i = $t->intron(0).

The behavior of this method is identical to the exon method, and like that method, if two transcripts of a
gene contain the same pair of exons, then those two transcripts will also share the same intron. Hence, an
intron object may be shared in common with one or more transcript objects. Like the explicit parts of a
CGL annotation, the sequence of an intron is accessed through the ‘residues’ method.

Access to Explicit and Implicit Coordinate Relationships

The metaPos() method allows CGL users to explore explicit and implicit coordinate relationships between
the parts of an annotation. Using this method, a programmer can relate any position on any part of an
annotation to the equivalent position on any other part of that annotation for which that operation makes
semantic sense. It is possible to move, for example, from a position in a protein sequence to the equivalent
position in an exon, transcript or contig and vice versa. The syntax of the MetaPos() method, is ‘reverse
polish’, and is used as follows:

<desired offset on $b> = $a->metaPos($b, <known offset on $a>).

The explicitly annotated start of an exon on the genomic contig, for example, can be recovered with the
following call:

$e->metaPos($c, 0),

where $e, and $c are exon and contig objects as described in the previous section, and 0 refers to the offset
of interest with the object calling the metaPos method. Note that because the Chaos data-model is ‘zero
space based’, an offset of 0 on the exon corresponds to its beginning; likewise the length of the exon
corresponds to its end. Thus, the explicitly annotated end of an exon on the genomic contig can be
obtained with the call

$e->metaPos($c, $e->length()).

Notice that the only difference between this call and the one above it involves the second argument to
metaPos(). To obtain, for example, the position of the 3

rd

base of an exon on the genomic contig—an implied
coordinate relationship, call the method with that offset, i.e.

$e->metaPos($c, 2).

The metaPos() method provides uniform access all coordinate relationships among the parts of an
annotation, explicit and implied. For, example, to recover the start of translation on a transcript use the call

$p->metaPos($t, 0).

Likewise the call below will return the position of the stop codon on a transcript.

$p->metaPos($t, $p->length).

The equivalent position on the protein of any position of the transcript can be recovered just as easily:

$t->metaPos($p, 341).

Note that relationships between an offset on a transcript and the equivalent position on a protein are
complicated by the genetic code. Since nucleotides are translated three-at-a-time, there exists a ‘many to
one’ relationship between positions on the transcript and positions on the protein. In order to avoid
ambiguity, the metaPos() method returns a float in such cases, the mantissa of which gives the amino acid,
the remainder the phase within that amino-acid’s codon. For example, a value of 21.33333 would mean that

an offset of 341 on the transcript corresponds to amino acid 21 of the protein in phase 1 of the 21
st

codon. A
value of 21.6666 would denote the same amino acid, but in phase 2. If the return value lacks a remainder, it
means that the phase is 0. In cases where the offset on the transcript lies in UTR, the call shown above will
return ‘undef’. This is true of all calls to the metaPos() method: if the requested meta position does not
logically obtain, the method will return undefined.

Some coordinate relationships require sequential calls to the metaPos() method. To recover the position of a
protein’s methionine on the genomic contig, for example, first find its position on the transcript:

$start = $p->metaPos($t, 0).

Then transpose that position onto the genomic contig:

$t->metaPos($c, $start).

Multi-step meta-positions such as these can be abbreviated as:

$t->metaPos($c, $p->metaPos($t, 0)),

and are required whenever the sought after coordinate relation involves a protein and some object that is
not a transcript.

The examples discussed so far illustrate two of the principle features of the metaPos() method. First, no
matter what parts of the annotation are involved, the grammar and syntax of the call remains the same and
has the form:

<desired offset on $b> = $a->metaPos($b, <known offset on $a>).

Second, it makes no difference whether the sought after coordinate relationship is explicitly described in
the Chaos data-model or implicit. Any semantically meaningful use of the metaPos()method will return a
value. This means that users of the CGL library are no longer slaves to the details of the annotation data
model—any coordinate relationship that they can imagine can be recovered in a single line of code. This
frees CGL users to discover explore and explore biologically meaningful relationships amongst the parts of
an annotation without even considering whether or not those relationships are explicit or implied.

Manufacturing Implicit Parts for further analyses

Most bioinformatics analyses involve sequence analyses. CGL facilitates these analyses by providing easy
access to the sequences that correspond to the explicit and implicit parts of an annotation. Access the
sequence of explicit parts is granted though the residues() method (see § Access to Explicit and Implicit
Parts for details). The large number and diversity of implied parts, however, precludes the existence of a
single, generic residues() method for the implied parts of an annotation. This means that CGL users
interested in the sequence of a particular implied part need to manufacture that sequence themselves. CGL
provides the easy means to do so.

UTRs are a good example. These sequences are of interest to many researchers, and yet can be difficult to
obtain. To recover the sequence of an annotated transcript’s 5-& 3-prime UTRs with CGL, first use the
metaPos() method to obtain the start and stop of the translation, where $t is the ‘transcript of interest’, and
$p, one of its translations:

$start = $p->metaPos($t, 0).
$stop = $p->metaPos($t, $p->length()).

The sequences of the 5 and 3-prime UTRs, respectively, can then be obtained with the following two
lines of code:

substr($t->residues, 0, $start);
substr($t->residues, $stop).

Or, if the user so desires, the entire procedure can be abbreviated in the form:

substr($t->residues, 0, $p->metaPos($t, 0));
substr($t->residues, $p->metaPos($t, $p->length)).

The sequences of more exotic implied parts of an annotation are just as easy to manufacture. The portion
of a protein corresponding to a given exon provides an instructive example. To manufacture this
sequence, first identify the exon’s implied begin and end on the transcript of interest:

$e = $t->exon(1);
$t_begin = $e->metaPos($t, 0);
$t_end = $e->metaPos($t, $e->length).

Next use the metaPos() method to identify the equivalent positions on the protein:

$p_begin = $t->metaPos($p, $t_begin);

$p_end = $t->metaPos($p, $t_end).

The desired portion of the protein’s amino-acid sequence can then be obtained with a call to the PERL
substring function:

substr($p->residues, $p_begin, $p_end -$p_begin).

Finally, users whose research is centered on a particular implied part of a gene may find it convenient to
write their own subroutines using CGL, thus reducing the amount of scripting required to manufacture such
sequences still further, e.g.:

print utr_sequence($t, $p, 5).”\n”;

sub utr_sequence {
 ($t, $p, $type) = @_; if ($type == 5){

return substr($t->residues, 0, $p->metaPos($t, 0));
}
else {
 return substr($t->residues, $p->metaPos($t, $p->length));

}
}

These examples demonstrate a fundamental design paradigm of CGL: less is more. The utility of CGL
springs from its simplicity. Rather than provide a bewildering array of exotic methods for manipulating
annotations, CGL provides a few essential methods that can be combined in different ways to manufacture
any implicit part of an annotation. Most tasks can be accomplished with recourse to only three methods:
residues(), length(), and metaPos(). This means that CGL users needn’t concern themselves with the details
of the data-model or database schema associated with the annotations. Nor need they concern themselves
with the guts of CGL. This means that very little time is required to master CGL, freeing users to focus on
biological problems, rather than gory programming details.

Every sequence alignment implicitly aligns two genes: using Phat Hits & HSPs

CGL provides the means to compare genome annotations to one another using BLAST sequence
alignments. It does so by extending the BioPerl GenericHit and GenericHSP classes. These extensions,
called PhatHit and PhatHSP, provide additional methods that greatly facilitate comparative genomics as
they grant users improved access to the coordinate relationships implied by BLAST HSPs. Whereas the
existing BioPerl classes provide access only to the begin and end coordinates of an alignment, the Phat
classes provide access to the explicit and implied positions of any aligned residue in a BLAST HSP. Their
methods operate on gapped alignments. Moreover, the Phat classes also transparently manage the
complexities that arise when attempting to relate the position of an aligned amino acid in a BLASTX,
TBLASTN, or TBLASTX alignment to its actual position on the nucleotide sequence provided to BLAST.
Requests, for example, for the position on an aligned amino acid in the query portion of a TBLASTN
alignment will return the position of that amino acid on the protein query, whereas a request for a position
on the sbjct portion for the alignment are returned relative to the subject’s nucleotide sequence. Perhaps,
more importantly, once a user has identified a position of interest on one strand of an alignment, the
equivalent coordinate on the other sequence can be recovered in a single method call. This feature greatly
facilitates comparative genomics analyses, as that coordinate can then be passed to CGL’s metaPos()
method allowing users to explore other, implied relationships between the parts of two genome annotations.

Parsing a BLAST report using the Phat Classes

To employ the CGL extensions of the Bioperl Hit and HSP classes when parsing a BLAST report first
create a Bioperl Bio::SearchIO object:

$sio = new Bio::SearchIO(-format => ‘blast’, -file => ‘my_blast_report’).

The next step is to select the appropriate subclass of PhatHit and PhatHSP objects to employ. Use the blastn

subclasses for BLASTN reports, the tblastx subclasses when parsing TBLASTX reports, etc. If parsing a
BLASTP report, for example, use the blastp subclasses:

$hit_type = ‘Bio::Search::Hit::GenericHit::blastp::PhatHit’;

$hsp_type = ‘Bio::Search::Hit::GenericHit::blastp::PhatHSP’.

The next step is to create Bioperl Object factories that will populate these classes when parsing the blast
report:

$hit_factory = new Bio::Search::Hit::HitFactory(-type => $hit_type);

$hsp_factory = new Bio::Search::HSP::HSPFactory(-type => $hsp_type);

These object factories are then registered with the Bioperl SearchIO event handler as follows.

$sio->_eventHandler-> register_factory(‘hit’, $hit_factory).

$sio->_eventHandler->register_factory(‘hsp’, $hsp_factory).

Hit and HSP objects are now employed just as they would be normally using Bioperl e.g.

 $result = $sio->next_result();

$hit = $result->next_hit();

$hsp = $hit->next_hsp();

But, because they are Phat, they provide an extended set of methods designed to facilitate comparative
genomics. The most important of these methods are documented below.

Using Phat HSPs together with annotations for comparative genomics

PhatHSPs are extensions of the Bioperl GenericHSP class. For working examples of how to use Phat Hits
and HSPs see cgl_phat_tutorial, a starter script located in the CGL script sub-directory.

For purposes of the following description of their use, consider the BLASTP HSP shown in figure 2. In the
examples below, the CGL object corresponding to the query protein aligned in figure 2, is denoted as $q_p;
that protein’s transcript, is $q_t; and one of its exons is $q_e. Likewise, $s_p denotes the corresponding
sbjct protein, and $s_t that protein’s corresponding transcript.

Score = 94 (38.1 bits), Expect = 2.2e-10, P =
2.2e-10, Identities = 15/18 (83%),
Positives = 16/18 (88%)

Query: 1 MDEWRQWKMDEQVWDAER 18

 MD+WR WKMD+QVWD ER
Sbjct: 1 MDDWR-WKMDKQVWDMER 17

Figure 2. A WU-BLASTP HSP

Suppose one is interested in determining if the sequence alignment shown in figure 2 implies that the two
genes producing those proteins possess an intron at the same position relative to their protein sequences.

The position of a particular splice junction on the query protein can be obtained with the CGL call:

$pos_on_q_protein = $q_t->metaPos($q_p, $q_e->metaPos($q_t, 0)).

A value of, for example, 10 would mean that the exon, $q_e, began in phase 0, just prior to the ‘E’ located
at position 11 of query sequence shown figure 2. For more information about how CGL handles phase
relationships see the preceding section entitled ‘Access to Explicit and Implicit Coordinate Relationships’.
Note that coordinate returned by CGL’s metaPos() method must be incremented by 1 as unlike CGL,
Bioperl does not employ a zero, space-based coordinate system.

Of course the fact that a splice junction maps to a position on the protein, says nothing about whether or not
that region of the protein is aligned a particular HSP. To ascertain this fact use the two calls shown below.

next unless $hsp->nB(‘query’) <= $pos_on_q_protein + 1.

next unless $hsp->nE(‘query’) >= $pos_on_q_protein + 1.

PhatHSPs provide two methods called nB() & nE() or natural begin and natural end, respectively. These
method behave exactly like the Bioperl GenericHSP start() and end() methods, except that they preserve the
native order of the start and end coordinates of an HSP given in the BLAST report, i.e.,

$hsp->nB() > $hsp->nE() for minus strand hits.

 These methods facilitate some analyses. Note that PhatHit and PhatHSP objects observe the Bioperl
practice of referring to the ‘sbjct’ sequence of a BLAST HSP as the ‘hit’.

Alternatively, whether or not an HSP contains a position of interest in its alignment can also be determined
with the call:

$hsp->isContained(‘query’, $pos_on_q_protein + 1).

The isContained() method will return 0 if the position on the specified ‘query’ or ‘hit’ sequence lies outside

of the HSP or if the residue located at the position specified by the 2
nd

argument is opposite a gap in its
partner, otherwise it will return 1.

Phat HSPs provide easy access to the character present at any position of a BLAST sequence alignment
through the whatIsThere() method; the first argument to this method specifies the sequence of interest:
‘query’ or ‘hit’, the second the position of interest on that sequence.

$hsp->whatIsThere(‘query’, $pos_on_q_protein + 1).

For the HSP shown in figure 2, the call shown above will return an ‘E’, as this is the amino acid present at
that position of the sequence alignment in figure 2.

The equivalent position on the sbjct sequence can be recovered with the following call.

$hsp->equivalent_pos_in_alignment_partner(‘query’, $pos_on_q_protein + 1).

The first argument to the above method denotes which sequence, ‘query’ or ‘hit’ the coordinate given as the
second argument lies on. The method returns the equivalent position on the alignment partner. If $hsp were
a TBLASTN or TBLASTX HSP, the return value would in nucleotide coordinates. In this example, the
method would return a value of 10 (see figure 2), as this position on the hit sequence that corresponds to a
position of 11 on the query sequence. Note that the equivalent position on the annotated hit protein is 9.
(recall that BioPerl counts from base 1, whereas CGL counts from space 0) A fact that can be verified with
the call:

die unless $hsp->whatIsThere(‘hit’, 10) eq substr($s_p->residues, 9, 1),

where $s_p is the corresponding CGL protein object for the sbjct sequence. Both calls would return a

‘K’ for the example shown in figure 2. Had the residue at that position on the query sequence been
opposite a gap in the sbjct sequence, the method would have returned undefined.

Determining if the gene producing the subject protein contains an intron at this position is accomplished
with a short CGL based subroutine, e.g.,

print “YES\n.” if intron_at_this_pos_on_protein($s_t, $s_p, 9);

sub intron_at_this_pos_on_protein {
($t, $p, $pos) = @_;
$i= 0;
while($e = $t->exon($i)){

$i++;
$i_pos = $t->metaPos($p, $e->metaPos($t, 0));
next unless defined($i_pos);
return 1 if int($i_pos) == $pos;

}
return 0;

}

Obviously many variations of the examples shown in this brief exposition are possible. PhatHSPs and the
protein, transcript and exon objects provided by CGL are designed to complement one another, especially
as regards the metaPos() method. The ability to easily relate the parts of one annotation to those of another
using a sequence alignment makes simple many analyses that were previously next to impossible.

Conclusions

The analyses presented here demonstrate that CGL provides an easy means to explore, compare, and
characterize genome annotations. As the code will run anywhere the CGL library is installed and Chaos
documents are available, changing workplaces does not longer require downtime in order to master the
quirks of the local database schema and programming environment; all that’s required to use CGL is a basic
knowledge of PERL, and familiarity with concepts such as exon, transcript and protein.

For more information about using CGL for analyses see:

Large-Scale Trends in the Evolution of Gene Structures within 11 Animal Genomes
Mark Yandell, Chris J. Mungall, Chris Smith, Simon Prochnik, Joshua Kaminker, George Hartzell, Suzanna
Lewis & Gerald M. Rubin. PloS Computational Biology, in press.

A computational and experimental approach to validating annotations and gene predictions in the
Drosophila melanogaster genome. Mark Yandell, Adina M. Bailey, Sima Misra, ShengQiang Shu, Colin
Wiel, Martha Evans-Holm, Susan E. Celniker and Gerald M. Rubin
PNAS, February 1, 2005; vol. 102; no. 5;pp. 1566-1571

Appendix 1: Details of the Chaos data-model

Please see the following web page: www.fruitfly.org/chaos-xml

Appendix 2: CGL is based around the Sequence Ontology

Comparing the parts of genes to one-another dictates that the terms used to describe an annotation and its
parts be precisely defined; note that ‘parts’ means things like ‘exon’, intron’ ‘stop codon’, etc. Normally,
one relies on common usage when applying descriptive terms such as ‘exon’, or ‘UTR’, to a gene, but
large-scale comparative genomics requires that we be more precise, least ambiguity creep into comparisons.
Does a UTR contain a stop codon? Do all transcripts contain exons? Rational arguments can be made for
answering either of these questions with a ‘yes’ or ‘no’. What is important is that there exist a fixed and
fully defined terminology for describing the parts of an annotation and how they relate to one another. It is
for these reasons that CGL employs the Sequence Ontology [2].

CGL employs the Sequence Ontology to define its class schema, inheritance hierarchy and interfaces. The
Current release of CGL contains modules for contigs, genes, transcripts, exons, introns, and protein objects.
These objects are created on demand when CGL parses a Chaos XML document. For example, transcript
objects are created when CGL encounters the term ‘transcript in a document. Likewise, because the
Sequence Ontology describes an exon as a legitimate part of a transcript, CGL will look for, automatically
create and attach the appropriate set of exon objects to each transcript object.

CGL also uses the Sequence Ontology as a natural paradigm for sub-classing objects. For example, if a
portion of an annotation is described as an ‘mRNA’ in a document, CGL will create a transcript object
corresponding to that feature; this is because an ‘mRNA’ ‘isa’ ‘Transcript’ according to the Sequence
Ontology. Thus, any term that is a child of the Sequence Ontology terms ‘Transcript’, ‘Exon’, ‘Intron’, and
‘Protein’ can be used to describe the parts of a gene in a Chaos XML document.

The methods appropriate to a class are also (in part) dictated by the Sequence Ontology. If an mRNA is
found to have a defining, essential part, then at some future point in time, it may prove advisable to create a
CGL::Annotation::Feature::Transcript::mRNA class containing a method particular to an mRNA.. Thus, the
Sequence Ontology also provides a natural direction in which to extend CGL as it matures.

Bibliography
1. Lewis SE, Searle SMJ, Harris N. et al., 2002. Apollo: a sequence annotation editor.

 Genome Biology 3(12):research 0082

2. Eilbeck K, Lewis SE, Mungall CJ, Yandell M, Stein L, et al. (2005) The Sequence Ontology: a
 tool for the unification of genome annotations. Genome Biol 6: R44.

3. Generic Model Organism Database [www.gmod.org]

4. Stajich JE, Block D, Boulez K, Brenner SE, Chervitz SA, Dagdigian C, Fuellen G, Gilbert JG,

 Korf I, Lapp H et al: The Bioperl toolkit: Perl modules for the life sciences. Genome Res 2002,
 12(10):1611-1618.

5. Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, DL. 2003. GenBank Nucleic Acids Res. 31:
23-27.

6. Ensembl homepage [www.ebi.ac.uk/ensembl/] Dwight SS, Balakrishnan R, Christie KR, Costanzo

MC, Dolinski K, Engel SR, Feierbach B, Fisk DG, Hirschman J, Hong EL et al.

7. Saccharomyces genome database: underlying principles and organisation. Brief Bioinform.

2004,5:9-22.

8. Misra S, Crosby MA, Mungall CJ, Matthews BB, Campbell KS, Hradecky P, Huang Y, Kamiker JS,
Millburn GH, Prochnik SE et al.: Annotation of the Drosophila melanogster euchromatic genome: a
systematic review. Genome Biology 2002, 3:RESEARCH0083.1-0083.22

9. Stein L, Sternberg P, Durbin R, Thierry-Mieg J, Spieth J: WormBase: network access to the

genome and biology of Caenorhabditis elegans. Nucleic Acids Res. 2001, 29:82-86.

